Sagemaker Data Prep
Let’s explore the Bank dataset from UCI. First, to download and explore the dataset, run the following code in your notebook:
1
2
3
4
5
6
!wget -N https://archive.ics.uci.edu/ml/machine-learning-databases/00222/bank-additional.zip
!unzip -o bank-additional.zip
data = pd.read_csv('./bank-additional/bank-additional-full.csv', sep=';')
pd.set_option('display.max_columns', 500) # Make sure we can see all of the columns
pd.set_option('display.max_rows', 5) # Keep the output on one page
data
Next, add new features no_previous_contact and not_working as indicators. Then convert all categorical variables into indicators.
1
2
3
4
5
data['no_previous_contact'] = np.where(data['pdays'] == 999, 1, 0) # Indicator variable to capture when pdays takes a value of 999
data['not_working'] = np.where(np.in1d(data['job'], ['student', 'retired', 'unemployed']), 1, 0) # Indicator for individuals not actively employed
model_data = pd.get_dummies(data) # Convert categorical variables to sets of indicators
model_data
model_data = model_data.drop(['duration', 'emp.var.rate', 'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed'], axis=1)
Now, split the model data into train, validation & test sets and save them as CSV files to disk. From there you can use Boto library to put these files onto a S3 bucket.
1
2
3
4
5
6
7
8
train_data, validation_data, test_data = np.split(model_data.sample(frac=1, random_state=1729), [int(0.7 * len(model_data)), int(0.9*len(model_data))])
pd.concat([train_data['y_yes'], train_data.drop(['y_no', 'y_yes'], axis=1)], axis=1).to_csv('train.csv', index=False, header=False)
pd.concat([validation_data['y_yes'], validation_data.drop(['y_no', 'y_yes'], axis=1)], axis=1).to_csv('validation.csv', index=False, header=False)
pd.concat([test_data['y_yes'], test_data.drop(['y_no', 'y_yes'], axis=1)], axis=1).to_csv('test.csv', index=False, header=False)
boto3.Session().resource('s3').Bucket(bucket).Object(os.path.join(prefix, 'train/train.csv')).upload_file('train.csv')
boto3.Session().resource('s3').Bucket(bucket).Object(os.path.join(prefix, 'validation/validation.csv')).upload_file('validation.csv')